奥数考试题型及解题思路「」

时间:2024-05-23 12:45:37
奥数考试题型及解题思路「汇编」

奥数考试题型及解题思路「汇编」

导语:数学是小学阶段学习的重点科目之一,尤其小学奥数知识,更是考试常见的拔分题型。以下是小编为大家精心整理的奥数考试题型及解题思路【汇编】,欢迎大家参考!

  盈亏问题

基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于

分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量。

基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量。

基本题型:

①一次有余数,另一次不足;

基本公式:总份数=(余数+不足数)÷两次每份数的差

②当两次都有余数;

基本公式:总份数=(较大余数一较小余数)÷两次每份数的差

③当两次都不足;

基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差

基本特点:对象总量和总的组数是不变的。

关键问题:确定对象总量和总的组数。

  工程问题

基本公式:

①工作总量=工作效率×工作时间

②工作效率=工作总量÷工作时间

③工作时间=工作总量÷工作效率

基本思路:

①假设工作总量为“1”(和总工作量无关);

②假设一个方便的数为工作总量(一般是它们完成工作总量所用时间的最小公倍数),利用上述三个基本关系,可以简单地表示出工作效率及工作时间。

关键问题:确定工作量、工作时间、工作效率间的两两对应关系。

  几何面积

基本思路:

在一些面积的`计算上,不能直接运用公式的情况下,一般需要对图形进行割补,平移、旋转、翻折、分解、变形、重叠等,使不规则的图形变为规则的图形进行计算;另外需要掌握和记忆一些常规的面积规律。

常用方法:

1.连辅助线方法

2.利用等底等高的两个三角形面积相等。

3.大胆假设(有些点的设置题目中说的是任意点,解题时可把任意点设置在特殊位置上)。

4.利用特殊规律

①等腰直角三角形,已知任意一条边都可求出面积。(斜边的平方除以4等于等腰直角三角形的面积)

②梯形对角线连线后,两腰部分面积相等。

③圆的面积占外接正方形面积的78.5%。

  综合行程

基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系。

基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间

关键问题:确定运动过程中的位置和方向。

相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)

追及问题:追及时间=路程差÷速度差(写出其他公式)

流水问题:顺水行程=(船速+水速)×顺水时间

逆水行程=(船速-水速)×逆水时间

顺水速度=船速+水速

逆水速度=船速-水速

静水速度=(顺水速度+逆水速度)÷2

水 速=(顺水速度-逆水速度)÷2

流水问题:关键是确定物体所运动的速度,参照以上公式。

过桥问题:关键是确定物体所运动的路程,参照以上公式。

主要方法:画线段图法

基本题型:已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量。

  鸡兔同笼问题

基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;

基本思路:

①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):

②假设后,发生了和题目条件不同的差,找出这个差是多少;

③每个事物造成的差是固定的,从而找出出现这个差的原因;

④再根据这两个差作适当的调整,消去出现的差。

基本公式:

①把所有鸡假设成兔子:鸡数=(兔脚数×总头数——总脚数)÷(兔脚数——鸡脚数)

②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)

关键问题:找出总量的差与单位量的差。

《奥数考试题型及解题思路「汇编」.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式