数学五年级上册解方程教案

时间:2024-06-11 16:57:32
数学五年级上册解方程教案

数学五年级上册解方程教案

作为一名默默奉献的教育工作者,时常需要用到教案,借助教案可以让教学工作更科学化。来参考自己需要的教案吧!下面是小编帮大家整理的数学五年级上册解方程教案,欢迎阅读,希望大家能够喜欢。

数学五年级上册解方程教案1

教学内容:

教科书58页例1。

教学目标:

1、结合图例,根据等式不变的性质,学会解简易方程。

2、掌握解方程的书写格式,并能用代入法进行检验。

3、提高学生的分析、理解能力,同时渗透函数的思想。

教学重点:

掌握解方程的方法和书写格式。

教学重点:

掌握解方程的方法。

教具准备:

可见、平台

教学过程:

一、复习。

1、提问:什么是方程?

2、判断下面各式哪些是方程?

a+24=734 X =36+1723÷a>43X +843 X +4y=848÷a=9

3、后面括号中哪个x的值是方程的解?

(1)X +42=98 (X =57,X =135)

(2)5.2- X =0.7 (X =4.5,X =8.8)

4、等式的性质是什么?(方程两边同时加减或乘除同一个数(0除外),左右两边仍然相等)

5、导入:今天,我们就利用等式的性质来解方程。

板书课题:解方程

二、新课学习。

1、出示例1的图

(1)问:你们猜盒子里装的是什么?(皮球)问:从图中你获取了哪些信息?

(盒子里有X个皮球和外面3个皮球等于9个皮球)

(2)请学生根据关系列出式子。

板书:X +3=9

(3)问:怎样解这个方程呢?(出示课件)

(4)师:我们可以用天平保持平衡的道理来帮助解方程。

(5)看课件演示

问:要使天平左边只剩下“X”而还能保持平衡,该怎么办呢?

(6)学生思考后回答。

(7)演示课件

教师一边演示一边在黑板写出:X +3-3=9-3

(8)师生小结:方程两边同时减去同一个数(3)

(9)问:为什么要减3,减2可以吗?学生回答

(10)天平两边同时减去同一个数,天平两边还平衡吗?

出示课件,学生回答:平衡

师板书:左右两边仍然相等

(11)那么天平左边剩下X右边剩下6个球,X =6是不是正确的答案呢?我们来验算一下(师在黑板板演验算过程)

2、小结:今天,我们利用了什么知识来解方程?(等式的性质)在解方程

的过程中我们还要注意些什么呢?(我们要注意书写格式,等号要对齐,注意:x=6表示一个数值,后面不能带单位,解方程要用代入法检验一下方程的解是否正确。)

3、质疑:看书58页,还有什么不明白的地方?

(通过练习测试学生的掌握程度)

三、练习。

1、出示课件:第59页做一做的第一题中的第一个图:列方程解答并验算

(1)学生独立完成,师巡视。

(2)指名学生板演,并说说如何解答的?

2、加法会解了,那么减法又怎样做呢?我们来挑战一下。

(1)课件出示:x-2=15 小组讨论完成

(2)投影学生的计算结果,让学生说出解题思路。

3、我最棒

(1)我是小法官

A:x+1.2=5.7 B:x-1.8=4 x+1.2-1.2=5.7-1.2 解:x-1.8+1.8=4+4 x=4.5 x=8

4、找朋友

8+ X =16 X =3

X -6=17 X =9.6

X +2.1=5.1 X =8

X -3.2=6.4 X =23

5、拓展

X -0.5=3+1.9

四、作业

数学课本63页练习十一的第5题中的前四题。

数学五年级上册解方程教案2

教学目标:

(1)学生初步理解“方程的解”、“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。

(2)初步理解等式的基本性质,能用等式的性质解简易方程。

(3)关注由具体到一般的抽象概括过程,培养学生初步的代数思想。

(4)重视良好学习习惯的培养。

教学重、难点:

“方程的解”和“解方程”之间的联系和区别;利用天平平衡的道理理解比较简单的方程的方法。

教学过程:

一、回顾旧知,引出课题(课件出示天平)

师:老师在天平的左边放了一杯水,杯重100克,水重X克,一杯水重多少?

生:(100+X)克

师:在天平的右边放了多少砝码,天平保持平衡呢?(教师边讲边操作100克、200克、250克)

师:请你根据图意列一个方程。

生:100+X=250(课件显示:100+X=250)

师:这个方程怎么解呢?就是我们今天要学习的内容——解方程。(板书课题:解方程)

[设计意图:从复习天平保持平衡的道理入手,引出课题,引导学习质疑,有利于激发学生主动探究、深入学习的积极性。]

二、探究新知

1.认识“方程的解”和“解方程”的两个概念

师:(出示课件)那你猜一猜这个方程X的`值是多少?并说出理由。

生1:我有办法,可以用250-100=150,所以X=150.

生2:我有办法,因为100+150=250,所以X=150

生3: 老师我也有办法,我是这样想的,假如方程的两边同时减去100,就能得出X=150

师:XXX同学的想法太棒了!我们一起探索验证一下。请看屏幕,怎样操作才使天平左边只剩X克水,而天平保持平衡。

生:我在天平的左边拿走一个重100克空杯子,在天平的右边拿走100克的砝码,天平保持平衡。

师:你能根据操作过程说出等式吗?

生:100+X-100=250-100

师:这时天平表示未知数X的值是多少?

生:X=150

师:是的,XXX同学的想法是正确的,方程左右两边同时减100,就能得出X=150。我们表扬他。

师:根据刚才的实验,我们来认识两个新的概念———“方程的解”和“解方程”。

师:指着方程100+X=250说:“X=150是这个方程的解。(课件显示:方程的解)

师:

100+X=250

100+X-100=250-100

指着方框说:“这是求方程的解的过程,叫解方程。

师:在解方程的开头写上“解:”,表示解方程的全过程。

师:同时还要注意“=”对齐。

师:都认识了吗?请打开课本第57页将概念读一次,并标上重点字、词。

师:你们怎么理解这两个概念的?

(学生独立思考,再在小组内交流。)

师:谁来说说你想法?

生1:“解方程”是指演算过程

生2:“方程的解”是指未知数的值,这个值有一个前提条件必须使这个方程左右两边相等。

师:“方程的解”和“解方程”的两个解有什么不同?

生:“方程的解”的解,它是一个数值。“解方程”的解,它是一个演变过程。

[设计意图:通过自主学习、组内交流、合作,达到培养学生自主、互助的精神。]

2.教学例1。

师:要是老师出一个方程,你会求这个方程的解吗?

生:会。

师:请自学第58页的例1的有关内容。

[学生独立学习例1的有关内容,设计意图:给足够的时间让学生学习,让学生发现]

师:四人小组讨论方程左右两边为什么同时减3?

[学生独立思考,再在小组内交流。]

师:(出示例1)左边有X个,右边有3个,一共用9个。根据图意列一个方程。

生:X+3=9(板书:X+3=9)

师:X+3=9这个方程怎么解?我们可以利用天平保持平衡的道理帮助理解,请看屏幕。

师:球在天平不好摆,老师在天平上用方块来代替它。怎样操作才使天平的左边只剩X,而天平保持平衡。

生:天平左右两边同时拿走3个方块,使天平左边只剩X,天平保持平衡。师:根据操作过程说出等式?

生:X+3-3=9-3(板书:X+3-3=9-3)

师:这时天平表示X的值是多少?

生:X=6(板书:X=6)

师:方程左右两边为什么同时减3?

生1:使方程左右两边只剩X。

生2:方程左右两边同时减3,使方程左边只剩X,方程左右两边相等。

师:“方程左右两边同时减3,使方程左边只剩X,方程左右两边相等。”就是解这个方程的方法。

师:这个方程会解。我们怎么知道X=6一定是这个方程的解呢?

生:验算。

师:对了,验算方法是什么?

生:将X=6代入原方程,看方程的左边是否等于方程的右边。

(板书:

验算:方程的左边=6+3=9

方程的右边=9

方程的左边=方程的右边

所以,X=6是方程的解。)

师:以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的习惯。力求计算准确。

[设计的意图:自学思考汇报交流既有利于每个学生的自主探索,保证个性发展,也有利于教师考察学生思维的合理性和灵活性,考察学生是否能用清晰的数学语言表达自己的观点。]

3.练习

师:现在老师看看同学们对于解方程掌握得怎么样。

(1) 判断题

A. X=3是方程5X=15的解。( )

B. X=2是方程5X=15的解。( )

(2) 考考你的眼力,能否帮他找到错误所在呢?

X+1.2=4 X+2.4=4.6

X+1.2-1.2=4-1.2 =4.6-2.4

X=2.8 =2.2

(3) 填空题

X+3.2=4.6

X+3.2○( )=4.6○( )

X=( )

(4)将课本59页做一做的第1题的左边一小题写在单行纸上。

[设计意图:游戏练习形式有趣,有利于激发学生的学习兴趣,活跃课堂气氛。让学生在轻轻松松中,及时有效地巩固强化概念。]

4.小结:解含有加法方程的步骤。(口述过程)

三、巩固延伸

师:谁能说说解含有加法和减法的方程的步骤?(随着学生,显示全过程。)

生:

解方程的步骤:

a)先写“解:”。

b)方程左右两边同时加或减一个相同的数,使方程左边只剩X,方程左右两边相等。

c)求出X的值。

d)验算。

四、全课小结

1、通过今天的学习,同学们有哪些收获?

2、以小组为单位自评或互评课堂表现,发扬优点、改正缺点。

3、对老师的表现进行评价。

[设计意图:教师始终把学生放在主体地位,为学生提供了一个自己去想去说,去回味知识掌握过程的舞台,这样将更有助于学生掌握正确的学习方法,总结失败原因,发扬成功经验,培养良好的学习习惯。]

[板书设计]

解方程

例1:书本图

X+3=9 验算: X-2=15

解:X+3-3 =9-3 方程左边= 6+3=9 解: X-2+2=15+2

X=6 方程右边= 9 X=17

方程左边=方程右边

所以,X=6是方程的解。

数学五年级上册解方程教案3

教学内容

解方程:教材P69例4、例5。

教学目标

1.巩固利用等式的性质解方程的知识,学会解ax±b=c与a(x±b)=c类型的方程。

2.进一步掌握解方程的书写格式和写法。

3.在学习过程中,进一步积累数学活动经验,感受方程的思想方法,发展初步的抽象思维能力。

教学重点

理解在解方程过程中,把一个式子看作一个整体。

教学难点

理解解方程的方法。

教学过程

一、导入新课

我们上节课学习了解方程,这节课我们来继续学习。

二、新课教学

1.教学例4。

师:(出示教材第69页例4情境图)你看到了什么?

生:有3盒铅笔和4只铅笔,一盒铅笔盒中有x支铅笔。

师:你能根据图列一个方程吗?

生:3x+4=40。

师:你是怎么想的?

生:一盒铅笔盒有x支铅笔,3盒铅笔盒就有3x支铅笔。据此,可列出方程。

师:说得好,你能解这个方程吗?

学生在尝试解方程时,可能会遇到困难,要让学生说一说自己的困惑。学生可能会疑惑:方程的左边是个二级运算不知识如何解。也有学生可能会想到,把3个未知的铅笔盒看作一部分,先求出这部分有多少支,再求一盒多少支。(如果没有,教师可提示学生这样思考。)

师:假如知道一盒铅笔盒有几支,要求一共有多少支铅笔,你会怎么算?

生:先算出3个铅笔盒一共多少支,再加上外面的4支。

师:在这里,我们也是先把3个铅笔盒的支数看成了一个整体,先求这部分有多少支。解方程时,也就是先把谁看成一个整体?我们可以先把“3x”看成一个整体。

让学生尝试继续解答,教师根据学生的回答,板书解题过程。也可以让学生同桌之间再说一说解方程的过程。

2.教学例5。

师:(出示教材第69页例5)你能够解这个方程吗?

生1:我们可以参照例4的方法,先把x-16看作一个整体。

学生解方程得x=20。

生2:我们也可以用运算定律来解。

师:2x-32=8运用了什么运算定律?

生:运用了乘法分配律。然后把2x

看作一个整体。

学生解方程得x=20。

师:你的解法正确吗?你如何检验方程是否正确?

生:可以把方程的解代入方程中计算,看看方程左右两边是否相等。

三、巩固练习

教材第69页“做一做”第1、2题。

第1题的形式、内容都与例4基本相同。第2题的4个方程在两道例题的基础上略有变化,使学生学会举一反三。

这两道练习要让学生独立完成,教师可提醒学生解一题,代入检验一题,以促进检验习惯的养成。

四、课堂小结

1.在解较复杂的方程时,可以把一个式子看作一个整体来解。

2.在解方程时,可以运用运算定律来解。

五、布置作业

教材第71页“练习十五”第6、8、9.题。

《数学五年级上册解方程教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式